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SUMMARY

A two-level procedure designed for the estimation of constitutive model parameters is presented in this
paper. The neural network (NN) approach at the first level is applied to achieve the first approximation
of parameters. This technique is used to avoid potential pitfalls related to the conventional gradient-based
optimization techniques, considered here as a corrector that improves predicted parameters. The feed-
forward NN (FFNN) and the modified Gauss—Newton algorithms are briefly presented. The proposed
framework is verified for the elasto-plastic modified Cam Clay model that can be calibrated based on
standard triaxial laboratory tests, i.e. the isotropic consolidation test and the drained compression test. Two
different formulations of the input data to the NN, enhanced by a dimensional reduction of experimental
data using principal component analysis, are presented. The determination of model characteristics is
demonstrated, first on numerical pseudo-experiments and then on the experimental data. The efficiency
of the proposed approach by means of accuracy and computational effort is also discussed. Copyright ©
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulations have become a standard tool in geotechnical engineering, used in the design
and monitoring of existing constructions. The complexity of the boundary value problems (BVPs)
to be solved in geotechnical practice is mainly concerned with a highly non-linear behavior of
geomaterials. In the past decade many advanced constitutive models for soils were formulated to
reproduce stress—strain characteristics exhibited by soils. Apart from hydro-mechanical burdens,
soil behavior can also be a result of other forms of loading, e.g. varying temperature, saturation
effects, etc. Each model enhancement yields a larger number of material parameters that can be
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obtained by means of laboratory testing and/or in situ measurements. With the rising complexity
of models and the increasing number of parameters, there seems to be less confidence in assessing
material parameters [1]. Some parameters can be estimated directly through closed-form solutions;
others can be found only through time-consuming trial-and-error and curve-fitting procedures [2].
Consequently, the difficulties related to the assessment of parameters deter professional engineers
using advanced soil models, even if they are recommended for a specific geotechnical task. Hence,
there is an understandable demand for efficient automated identification toolboxes for commercial
applications, which may encourage practical engineers to use more elaborate models and run
numerical computations with a higher level of confidence.

In this paper, a two-level identification strategy of assessing model characteristics for elasto-
plastic models is investigated. This strategy is based on the feed-forward neural network (FFNN)
approach and gradient-based optimization (GBO).

One of the first papers concerning constitutive modeling by means of neural networks (NNs)
[3] encouraged researchers to begin exploring artificial intelligence abilities, adopting the NNs to
solve various mechanical problems. Ghaboussi and co-workers originally proposed an NN-based
framework for constitutive modeling in geomechanics [4, 5]. They introduced a concept of nested
adaptive NNs, which considers the nested structure of the material test data, e.g. dimensionality,
stress path dependency or drainage conditions. By means of the finite element (FE) method and
the autoprogressive training algorithm proposed in [6], they trained NNs with experimental non-
uniform triaxial test data, in order to capture and reproduce the non-linear response of the soil
without conventional concepts of the theory of plasticity. In addition, further research proved that
the NN-constitutive models can be successfully embedded within the FE codes to compute the
consistent tangent stiffness matrix [7, 8]. Hashash ef al. [8] demonstrated that a tangent stiffness
matrix can be derived from the NN-based material models, using the explicit formulation repre-
sented by network parameters. However, the main drawback of the NN-constitutive models is that
it is valid only for a specific material for which a new NN has to be adopted each time. Moreover,
a material model loses its ‘flexibility’, which is inherent in the case of conventional models and
which is controlled by parameters explicitly describing concepts of plasticity, such as yield surface,
flow rule and hardening law.

As NNs are able to generalize a multi-variable complex relationships, they can be applied
to solve typical geotechnical problems such as prediction of slope movements [9], prediction
of deflections of diaphragm walls [10] or mapping geophysical measurements of the complex
permittivity of a soil-water electrolyte system onto soil properties such as water content and degree
of saturation or density [11]. The NN technique has also been applied to determine the limit
state surface for reliability analysis [12]. Recently, NNs have been used to solve inverse problems
such as the identification of various mechanical properties from structural tests [13, 14] or some
geotechnical characteristics from in situ experimental data [15]. Shin and Pande [14] proposed
an identification of the orthotropic elastic constants by forming a set of equations representing
components of the computed tangent non-symmetric stiffness matrix for the NN-based constitutive
model with the unknown elements of the conventional orthotropic stiffness matrix. Pichler et al.
[15] also suggested using genetic algorithms for initial determination of network weights at the
beginning of NN training. Such an improved training algorithm may reduce the probability that the
gradient-based training algorithm will approach a local minimum during the minimization of
the global error for NN approximations. However, this algorithm would unnecessarily complicate
the one-time procedure of NN training, as network parameters can be adjusted within a few trial
training runs.
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Generally, the problem of parameter identification lies in proposing a set of characteristics, which
would minimize the difference between the quantities obtained from the stress—strain analysis and
experimental measurements. Such an inverse problem can be classically solved using the direct
approach, which requires processing the standard stress analysis in an iterative manner [16, 17].
As the non-linear problem may prove to be very complicated to solve analytically, the FE analysis
is often used as an engine; hence, the direct problem can be formulated as

Fex((t) —Fin(u, b, 1) =0 s.t. boundary condition and b e %, @))

where Fin(u, b, t) is the internal force vector that evolves in time ¢ and depends on model variables b
adhered to the physical parameter space %, u is the displacement vector and Fey(#) denotes
the vector of external forces. Usually, the back analysis is performed by means of automated
procedures involving suitable gradient-based minimization techniques such as conjugate gradient
[18], Newton [19,20] or quasi-Newton [2] algorithms. Performing the regression analysis, the
level of disagreement between numerical experimental data can be measured by a certain objective
function § [16,17,21-24]. Clearly, S depends on the vector of model parameters bj, where
j=1,...,NP and the problem of parameter identification is equivalent to minimization of the
objective function

1
S(b)=—/ ly(®)—y'(b,0)[[dr  where be ), 2
=1 Ji

where f; — 1y is the length of the observation time, y(¢) —y’(b, ) denotes the difference between
experimental data and calculated quantities and NP is the number of parameters.

The GBO techniques directly search for the minimum of S(b) using its value and derivatives with
respect to each parameter X;; =0Jy;/0b;. In the case of a non-linear problem, the gradient of S(b)
is computed employing, for instance, the FE analysis. Taking into account an iterative manner of
the direct search, this procedure requires a high computational effort. Moreover, the number of FE
analyses can be multiplied by the number of structural tests considered in the calibration procedure.
The minimization is terminated if a strong local minimum is met. Hence, the final solution strongly
depends on the accuracy of the user-specified initial vector of parameters b®. Starting from different
initial vectors, the inverse problem may exhibit the non-uniqueness of the solution because the
algorithm may yield different local minima. Moreover, in certain cases, the ill-posed initial vector
may lead to instability of the FE analysis because of the algorithm search for the solution in the
inadmissible space of parameters. Consequently, the function S, losing its continuity, is no longer
differentiable. Thus, the identification procedure should involve time-consuming trial-and-error
runs using various starting points in order to find the global minimum.

In order to avoid potential pitfalls related to GBO, there is a need for methods that approximate
the final solution, i.e. that find the vicinity of the global minimum. Typically, statistical methods
can be used to solve an inverse problem. The mixed formulation of genetic algorithms and NNs
[15] or the stochastic approach [25] can be found in the literature. Recently, genetic algorithms
have also been adapted to solve the model calibration problems, cf. [26—28]. However, the efficient
application of genetic algorithms requires generating a large number of individuals.

Hereafter, the NN approach is proposed to search the entire multi-dimensional space of param-
eters and to approximate soil model characteristics. Based on experimental data, an approximated
solution is generated by NN and then optimized through the gradient-based minimization. This
strategy will be verified on the triaxial compression tests for which a numerical specimen will be
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considered as a material point and will be subjected to a homogeneous stress state. Numerical
results will be used both to generate NN training samples and to perform the regression analysis.
The methodology of parameter identification is presented in detail in the following section.

The following sections present components of the proposed identification strategy, i.e. the NN
tool with two different approaches of a network input vector definition, also with an application of
the principal component analysis (PCA), and, finally, an adopted optimization algorithm. For the
sake of transparency of the demonstrated identification strategy, the simplest critical state model
was adopted in order to clearly present procedure routines. Thus, the modified Cam Clay (MCC)
model is briefly recalled [29]. It is also advantageous that all of the MCC model characteristics have
physical meaning so that a reliable comparison between values obtained numerically and by hand
can be demonstrated. The performance of the method is presented on benchmark laboratory triaxial
tests, i.e. isotropic consolidation (CI) and consolidated isotropic drained (CID) compression. These
simple homogeneous and one-phase BVPs were deliberately chosen to illustrate the method to
be as transparent as possible and to allow a direct analytical assessment of parameters for the
comparative analysis. The determination of the parameters of the model is initially presented for
numerical pseudo-experiments and finally for experimental data.

2. IDENTIFICATION METHODOLOGY

The FFNN approach is proposed to be the first step of the calibration of elasto-plastic constitutive
models. The FFNN algorithm is used as a predictor that instantly maps the experimental data of a
given test onto model parameters. Such a prediction constitutes the initial vector of parameters used
later on by GBO regarded as the correction step. Such a prediction can be regarded as an inverse
solution of the identification problem whereas the optimization involves the direct approach. The
strategy of the two-level parameter identification is schematically presented in Figure 1.

The self-organizing ability of NNs is used to prepare the prediction tool. The supervised NN
training (see Section 3) is performed only once based on the results from numerical pseudo-
experiments. The numerical model that is used to generate numerical measurements should reflect
the BVP of the real system. The sufficient number of training patterns allows NN to gain enough
knowledge in order to be able to generalize further inputs. Numerical simulations are carried out
for random variations of model parameters, b;, j=1,...,NP and be%),. Vectors of parameters
constitute the NN training target sets t={bz}, i.e. the values of parameters expected for the

corresponding results of previously computed NS, the number of pseudo-experiments, where
k=1,...,NS®_ Correspondingly, the numerical results are collected in the training input set
p= {y}{T}, where each vector yj (by) contains ND, the number of discrete measurements.

As constitutive models approximate only real soil behavior, the numerical simulations tend to
idealize the test response. Hence, the numerical response may never be fitted ideally to the real
curve. This suggests that numerical data would lead to the overfitting of NN and, consequently,
to an improper prediction. Hence, NN can be correctly trained by means of two approaches of
discretization. The first approach assumes that only gradient-delivering discrete points are chosen
and provided as the training input. An example will be presented in Section 6.3. The second method
consists of introducing noise into the smooth computed equilibrium paths using, for instance,
the Gaussian probability density function (pdf) and presenting to the network all observational
measurements. In this case, the mean value of the noise is prescribed as equal to zero in each
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Figure 1. Scheme of the two-level parameter identification with the development of a prediction tool.

equilibrium point whereas the standard deviation can be derived from a variability of the data
dispersion observed for experimental curves. The noise simultaneously introduces material and
geometrical imperfections regarded, among others, as sources of geotechnical uncertainty [12].
As the whole range of measurements of an experiment is considered, a dimensional reduction in
data is desired. This can be easily carried out by applying PCA, which transforms data into a new
coordinate system [30].

The choice of the method may depend on the possible level of data fitting, which is influenced
by smoothness of the response of a model subject to given boundary conditions.

For a considered constitutive model, NN training can be regarded as the one-time process, only if
the broad spans of parameter values are covered, for the generation of training patterns. Obviously,
a further development of an NN inverse model is not precluded, and any expected parameter
extensions can be reconsidered to retrain the existing NN. Hence, with the single computational
effort related to the NN model generation, the efficiently trained NN becomes a robust prediction
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Figure 2. An example of trapped optimization before reaching the global minimum and the possible space
of prediction with neural networks: (a) mesh and (b) contour.

tool ready to solve any inverse problem for a variety of soil stress—strain responses for a given BVP.
The activated trained NN with experimental data will respond, generating the vector of material
properties b?. Then, the quality of predicted parameters can be easily controlled by performing the

regression analysis of experimental data y and numerical results y'(b%). As NN is created to seek
the vicinity of the global minimum, the identified parameters may need only slight corrections
using the GBO technique. The relatively poorly recognized parameters by can be quickly updated
within r-iterations with the substantially reduced computational effort.

Considering the high complexity of non-linear soil constitutive models and the number of
parameters included, the performance of a traditional trial-and-error calibration with a large number
of tests is often computationally expensive and does not always lead to satisfactory results. These
problems related to GBO can be clearly illustrated using an example of parameter identification
for the cavity expansion BVP. Figure 2 presents a highly non-linear character of the error function
with respect to consolidation characteristics (permeability coefficient k and slope of the normal
consolidation line (NCL) 4). The presented error function is associated with the variation of cavity
strain in time, for a simulation of the pressuremeter pressure holding test. In order to transparently
illustrate the problem, the error function was extracted from the overall error function, including
the error function related to the second curve provided by the test, i.e. pore pressure dissipation in
time. It is shown that starting from a remote point, the calibration can be finished early if the small
tolerance for one of the convergence criteria is set. Despite the raising of the tolerance threshold,
the procedure can be terminated if the broad valley in the functional is met. On the other hand,
Figure 2(b) shows that the possible region of network prediction is close to the global minimum.
The area of a potential prediction can be easily deduced from the NN post-training analysis.

3. NN AS THE PREDICTION STEP

The concept of an artificial NN was inspired by the complex architecture of the human brain
regarded as a highly non-linear, parallel operating system [31]. Each NN is composed of an
assembly of single interconnected processing units that represent neurons of a human brain
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Figure 3. One-hidden-layer neural network topology.

(Figure 3). An elementary neuron consists of synaptic weights, coJ , which store ‘knowledge’
gained by the network and compute the excitation level in the summing junction as

6(”) Zwl(;')p,—i-ﬂ(j") where j=1,....M 3)

where n is an identity of the layer, N is the number of elements in the input vector, M is the
number of neurons in the n layer and 0; =co(()’;.) denotes a bias acting as a form of threshold. The

output of the jth processing unit is the unity value transformed by the non-linear differentiable
transfer function, e.g.

2
=—7r—1 4
fO=1r= 4)
As N single units can be interconnected through n hidden layers, they can create a collective
multi-layered network that is able to solve even highly non-linear problems.

3.1. Feed-forward procedure

The multi-layered network is designed hierarchically and consists of hidden layers. For the sake
of simplicity, the network with a single hidden layer is considered in the following theoretical
review. Each layer comprises processing units that are fully interconnected with units of the next
layer (Figure 3). The input layer consisting of NP) input units activates a hidden layer containing
N™ neurons. Then the signal is transmitted across outgoing connections to the N (?)-dimensional
output layer. In other words, the feed-forward algorithm maps the dimensionless values of the
input vector p;, i=1,...,N (P into the output vector ok, k=1,...,N ©) The output vector for a
network with one hidden layer can be expressed thus

N
or=f" ( > o 1 ( X o pit 0}’”) +0§;’>> &)
j=1
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This formula can be regarded as the closed-form solution to a given problem if network weights are
correctly adjusted. Such a designed NN with an ability to generalize can reconstruct an unknown
complex non-linear function that represents any posed problem.

It may happen that input and output vectors contain data comprising physical values often
varying in order of magnitude. In such cases, it may be useful to scale/normalize the input and
output vectors into dimensionless values falling into an interval (—1, 1).

3.2. NN training

Apart from the ability to generalize, NN possesses an important feature of self-organizing in the
light of a posed problem. The self-organization requires adjusting network weights by means
of performing supervised training. NN training is equivalent to a minimization of discrepancies
between output values produced by the untrained NN and target solutions considered as a part of
a training set.

In the supervised training NS), the number of representative patterns comprising input vectors
and corresponding targets is used to adjust network weights until NN satisfactorily approximates
a function. This is usually performed by one of the GBO techniques. The quality of network
performance can be validated by means of NS®, the number of simulation patterns, that has not
been presented to the network before. As mentioned above, each training pattern comprises the
input vector p; within N (") the number of elements (i=1,...,N (”)), and the corresponding output
vector oy of N elements (k=1,..., N©). During the first activation of the untrained network,
the network weights are chosen randomly, and therefore, discrepancies between each output vector
oy and target vector 7, are expected. Hence, the global error function to be minimized, F (¥, for
the total number of training sets, NS(’), can be calculated as follows:

1 NS® 1 NS® 1 N©@

> F Y —= Y (t(p)—ox(p))* — minimize (6)
N© =

F® = —
NS® /5 NS® /=

where ¢ denotes the index of the training pattern (r=1,...,NS®).

NN training aims at minimizing the global error by iterative adjustment of the network weights
according to the generalized delta rule [32]. The global error is gradually reduced in each network
activation, using one of the gradient descent optimization algorithms. Partial derivatives of the

global error with respect to the weights, a);‘;() and wg'), determine the gradient of weight increments,

Aa)(.‘;c) and Awg’), by means of the generalized delta rule. Hence, the learning process is referred
to the back-propagation term as the derivative of the global error is back-calculated contrary to
the direction of calculations of the activated network. The increments of weights are functions of
the partial derivatives of the global error with respect to weights

(€3]

0 © oF% (h) w(_, OF

Aa)jk :Aa)jk (—nW> and Awl.j =Awij (—11a D @)
@Djk ®;;

where 71 denotes the learning-rate parameter, superscripts (0) and (k) concern, respectively, the
output and the hidden layers whereas i, j,k denote the number of elements of a relevant layer
presented in Figure 3, i =1, L NW, j=1,..., N® k=1,..., N, For details see the literature
on the topic (e.g. [31, 32]).
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Prior to NN training, the network topology is designed arbitrarily containing N, the number
of neurons in hidden layers. The number of units highly depends on the complexity of a formulated
task. This can be influenced by the number of elements in the input and output vectors, as well
as by a dimension of a training set. Usually, the number of neurons in hidden layers remains
constant for a given training trial and is modified as necessary if the performance of the network is
not satisfactory. However, the search of an optimal topology can be automatized using a dynamic
update of the architecture during the training process [4, 33]. In our approach, optimal network
topologies have been found with a few trial training runs.

3.3. Principal component analysis

As mentioned above, training data samples are generated by means of FE analyses. Each analysis
is run in the incremental format and produces rows of numerous numerical measurements. Many of
these measurements, provided also with artificial noise imitating a natural scatter, can be correlated
and, in the context of parameter identification, may be redundant. Hence, it is useful to compute the
most meaningful basis to filter out the noise from numerical and further experimental measurements
and to extract the most meaningful information from a large data set. PCA is a statistical method
that reduces multidimensional data sets to lower dimensions [31]. Reducing a large data set, PCA
reveals a simplified hidden structure that can be nested in the test measurements. PCA is an
orthogonal linear transformation that transforms the data to a new coordinate system so that the
greatest variance of the projected data lies on the first principal axis, the second greatest variance
on the second axis, etc. Ignoring the higher-order principal components, the most affecting data
in the analysis are retained by lower-order ones.

Supposing that column vectors X1,Xo, ..., X, contain scaled observations of m =ND variables
of n=NS stress—strain analyses, means and deviations along each dimension m are mapped,
respectively, onto 0 and 1 according to the following equation:

%= xj —Elx;D and j=1,...,m ®)

VEXG 1= (Elx;1)?

The empirical correlation matrix (m x m) can be estimated as [34]

Rz%é XX = %XXT ©)

where X=[X1,...,X;,...,X,]. Then, using the orthogonal similarity of transformation
WIRW=V (10)
the matrix of eigenvectors W=[wy,...,w;,...,w;] and the diagonal matrix of eigenvalues V=
diag[vy,...,vj,...,v,] can be computed and arranged according to the descending order. The

principal component vectors can be thus computed as

yj=wik, j=1,...,1 (11)
where [ denotes the reduced number of observations 1</ <m under the condition that v; > v 1.
This operation transforms the #,, space into reduced dimension %, retaining those variables that
contribute most to the variance.
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4. OPTIMIZATION AS THE CORRECTION STEP

For the purpose of this research, from a variety of optimization techniques, the modified Gauss—
Newton (MGN) algorithm, reported in [23], has been adopted as the corrector for the NN-assigned
parameters. This iterative standard regression algorithm is regarded as an effective technique when
the weighted least-square objective function is adopted to measure discrepancies between discrete
measurements y and y’(x|b)

SMb)=[y—y x/b)"-0-[y—y (x|b)] (12)

where the diagonal weighting matrix  stores uncertainties of measurements assigning the impor-
tance of each variable. The MGN commences the iterative minimization of S(b) with the initial
vector b? assigned by NN. At each iteration r, the algorithm searches for the objective function
gradient d” solving linear equations

(C"XJoX,C+m,DC"-d"=C"XJo(y—y ®") (13)

where X is the sensitivity matrix evaluated directly by FE subroutine using forward finite difference
scheme; C= (XTO)X),:kl/ Zisa diagonal scaling matrix; m, is the Marquardt parameter and I is the
identity matrix. The Levenberg—Marquardt term m,I is introduced to accelerate the convergence
performance. As suggested in [23], the Marquardt parameter is prescribed initially as mo=0 and
updated in each iteration according to the rule m,,1=1.5m,+0.001.

At each iteration, the vector of parameters is updated as follows:

b tl=p, .d +b" (14)

where the scaling parameter p, is introduced to control the length of d” so that the maximal absolute
value of the fractional parameter value p, = (b;.Jrl —b;) / |b;.| changes less than the user-specified
tolerance dpmax. The scaling parameter is a scalar so that the search direction d” is preserved.

The iterative search procedure is accomplished if the largest and absolute change of each
optimized parameter in iteration r is less than the user-specified tolerance |d /b |<éwl, Vk=
1,...,NP.

As the solution domain for the elasto-plastic models exhibits usually a highly non-linear char-
acter, the accuracy of the gradient-based algorithm also highly depends on the guess of the initial
vector of parameters. Starting from a point that is located far away from the global minimum, the
search in the solution domain can be terminated early due to the occurrence of the local minimum.
At the same time, the efficiency of the process can be clearly reduced as the number of iterations
leading to the optimal solution increases. The choice of the initial vector has also a strong influence
on the stability of optimization. An ill-defined starting point may drive the search into a completely
opposite direction, causing the instability or lack of convergence of the FE simulation. The use of
the NN technique limits the admissible parameter space into the region near the global minimum
so that all aforementioned difficulties can be avoided.

5. ELASTO-PLASTIC CONSTITUTIVE MODEL

The proposed strategy will be applied to the isotropic elasto-plastic MCC model [29]. Despite certain
limitations this model is the simplest critical state 1 and can be used for normally consolidated
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or lightly overconsolidated clay. Furthermore, it is often the kernel of more complex models
such as multi-mechanism models [35]. Although the feasibility of the identification technique is
investigated with the MCC model, it can be adopted for much more complex constitutive models.
Such a simple model was selected to reliably verify the proposed parameter identification strategy.
Although most of the model parameters have a clear physical meaning and can be directly
estimated for the considered BVPs, in the case of numerical parameter identification, they can
be artificially perceived as ‘non-physical’ properties. This is so because all these parameters may
control and affect the stress—strain response of the model. This assumption is introduced only for
the demonstrative purpose because it is obvious that the MCC parameter estimates can be easily
assessed using the conventional triaxial test curves.

The yield and plastic potential surface is defined in terms of effective stress invariants p’=
—1I1/3 and ¢ =+/3J; and the preconsolidation pressure pc, that defines the overconsolidation ratio
R, =pco/p’. The equation for the state boundary surface for MCC (cf. Figure 4(b)) is given as

F(0', peo)=q>+M?-p'(p' = peo) =0 (15)

The constitutive model is characterized by five model parameters M, A, k, pco and v. The M
parameter is the slope of the critical state line (CSL) in the p’—g plane (Figure 4) and can be
expressed as M =6sin(¢;.)/ (3 —sin(¢y.)), where ¢y is the effective friction angle determined from
the triaxial compression test, v is the Poisson ratio, 4 and x denote, respectively, the slope of NCL
and unload-reload compression line in isotropic compression tests (Figure 4(a)). In the model,
lines of virgin loading and swelling are approximated linearly in the e —In p’ axes, which implies
consequently a linear relationship between bulk modulus, K, and the effective mean stress, p’

1
0, (16)

K=K(p)=

where ey denotes the initial voids ratio. In that case, G/ K =const. and is expressed by the formula

G 31—
—=— (17)
K 2 1+4v
Hence, the current shear modulus is computed through
3(1=2v)(14e0)p’
_31=20)(1+ep)p as8)
2(1+v)x
1'7“; pI’A p'c pl’s ln;’ P'o  Peo Pla pc P's I
(a) (b)
Figure 4. Scheme of test stress paths in (a) isotropic and (b) deviatoric plane.
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The total strain increment (rate) is decomposed into elastic, £°, and plastic parts, &P
E=8°+¢P (19)
where the effective stress rate is computed with the aid of the elastic stiffness matrix D®
¢ =D°.&° (20)
D° = (K — 3G)I+G2r 1)

The I symbol represents the unity tensor (;jx =0;x0;;) and I* is the symmetrized unity tensor
(Il.sjkl =(0ik01+0i10x)/2). Plastic strains occur when the stress state reaches the state boundary
surface given by Equation (15) and the flow rule is assumed to be associated

p_ 3 OF
P=1— (22)
do
where / is a plastic multiplier.
The hardening parameter modifies the state boundary surface and its evolution connected to the
irreversible (plastic) strains, &, is given by:

. I+eg .p
Pc=—mpc8kk (23)

6. EXAMPLES OF NUMERICAL IMPLEMENTATION

6.1. Selected BVPs

In order to investigate the robustness of the proposed identification scheme on a well-defined
BVP, routinely performed triaxial tests, i.e. (i) CI test, (ii) CID compression test, were adopted
to compare the quality of analytically and numerically evaluated/predicted characteristics of the
MCC model. These two BVPs were also chosen to illustrate the adoption of two approaches for
the training input discretization that have been presented in Section 2.

Performing the CI test for the preconsolidated material, consolidation characteristics x, 4, pco
can be obtained if the test is run through the elastic and plastic domains. The simulation of CI
does not require running FE analyses due to the linear solution in In p’ — e space (Figure 4(a)). To
obtain a numerical response of the model, each simulation contains five isotropic equilibrium paths
(points 0,7, A, B,C, see Figure 4(a)) corresponding to two measured variables, i.e. the mean
pressure at points, p,, peo, Py, Pg» P» and the volumetric strain, &), &}, £}, €5, &/-. Assuming that
the slopes of consolidation lines can be evaluated using the gradients of A—B and B—C paths, the
pressure p’, is kept constant for each numerical simulation whereas the ratios p/p/, and p,/pjy
are randomly imposed within the interval presented in Table I. Introducing a random variable
of peo/p/; that imposes an occurrence of plastic straining, various degrees of preconsolidation
are taken into account. Furthermore, to allow the identification to be executable regardless of the
applied stress increments, a normalization of mean stresses p; with respect to the maximal mean
stress py., was introduced applying dimensionless variables p!/py.... A discussion on the choice
of space of parameters as well as details concerning NN training will be presented in the following
subsections.
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Table I. Intervals of variables considered in NN training.

Interval

Variable CI test CID test

) (0.10, 1.20)
v — (0.25; 0.40)
M — (0.50; 1.50)
A cf. Figure 5

A (0.50: 0.95)

Peo/ Py (0.2;0.8) _
PPy (1.5;2.1) _
P/Pe (1.1;16.0) (1.1;2.2)

Although the simulation of CI does not require running FE analyses due to the simplicity of
the solution, the axisymmetrical simulations of the drained compression test were performed with
the use of an FE model. Simulations of the compression under triaxial conditions were carried out
using the MCC driver within the Z_Soil v.6 code [36]. In each computation, a strain-controlled
compression test was performed on the isotropically preconsolidated material subject to the stress
path C—F (Figure 4b). The degree of preconsolidation was imposed through initial stress conditions
03 = p- and the random values of R, = p / p- within the interval depicted in Table I. This interval
ensures the occurrence of yielding on the ‘wet’ side of boundary surface. For each simulation,
three variables, i.e. axial strain ¢;, volumetric strain ¢, and deviatoric stress ¢ were computed in
31 increments until & =20%. Small increments were imposed at the beginning of the test and
then were gradually extended toward the end of the test in order to capture the elastic gradient
regardless of the chosen set of parameters as well as to ensure the accurate convergence of the
FE analysis. For practical reasons, the normalization of the measured ¢ was applied so that the
identification could be executed regardless of the magnitude of the initial confining pressure pj.

a=a/pc (24)

6.2. Space of parameters

The choice of the admissible space of parameters %) plays an important role in NN training.
Parameters should be chosen from ranges that are observable in geotechnical practice in order to
(i) reduce the parameter domain, (ii) regularize the distribution in this domain and (iii) avoid the
non-physical vector of variables. The reduction in the multi-dimensional space of parameters may
lead to a significant decrease in the number of generated patterns with a simultaneous improvement
of accuracy. This may be of utmost importance if the large-scale FE models are considered in
pattern generation.

The intervals adopted in the generation of training patterns are presented in Table I. Typical
correlations between eg and A for clayey soils reported in [37-41] can be taken between the upper
and lower bounds, cf. Figure 5. Observable relationship between A and k represented through the
plastic volumetric strain ratio A=1—x// may fall into an interval A € (0.5; 0.9) [42]. The intervals
for the remaining model characteristics, M and v, were set according to commonly observable
values for clay.
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2.5

A Dascal and Laroque [37]

O Dzwilewski and Richards [38]
20 + Rendon-Herrero [39]

o Krizek et al. [40] x
x Leroueil and Tavenas [41]

Figure 5. Typical observable relationship between eg and 4.

Among other methods reported in [43], the random method of selecting training patterns was
adopted. Parameter and stress state distributions within the intervals were assumed to be uniform
except for the voids ratio eg, for which the exponential pdf was adopted to generate random
numbers due to the logarithmic approximation of the upper bound of / (Figure 5). The exponential
distribution is given by

X
1
P(x|u):/0 ;e’/"dtzl—e_x/" (25)

where p is the mean value, ¢ the standard deviation and x the random value from uniform
distribution. The log-normal distribution of e is to ensure a uniform distribution in the A interval.

6.3. Parameter identification for the CI test

For the purpose of the identification of soil properties from the CI test, a two-hidden-layer FFNN
was optimally designed for the 5-component input as NN(5|7—7|3), i.e. seven neurons in each
hidden layer for 3-output parameters. The optimal number of neurons was reduced to a minimum
to avoid an over-fitting tendency of the network [33]. Apart from the training set containing NS) =
130 numerical patterns, a set of 70 pseudo-experiments was prepared additionally to illustrate the
efficiency of the approximation. For each numerical experiment p’,, p’s, p- and the corresponding
&y were measured. Thus, the dimensionless input vectors corresponding to the measured variables
and the outputs regarded as unknown parameters are, respectively, given as

pe=leY, ey, el Py /Py P/ Pl = NN 0, =K, 2, peo/ Pg1" (26)

where r=1,...,NS). Note that the proper value of pc, is obtained by multiplying the dimen-
sionless component by the maximum applied mean pressure p’;. To improve the performance of
NN training, the input and output vectors were scaled so that their components fall into (—1, 1)
interval.

The quality of the approximation performance was assessed by presenting unknown measure-
ments to the trained network (Figure 6). The linear regression analysis performed after 70 activations
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Figure 6. Isotropic consolidation BVP: post-training regression analysis for the data set never presented
to the trained network: (a) pco/ p}g prediction; (b) x prediction; and (c) A prediction.

of NN exhibited a satisfactory agreement between accurate and NN-predicted values of pco, 4, K,
with the correlation coefficient R equal to 0.99 for each parameter and small values of mean-
squared error (MSE) (cf. Equation (6)). Moreover, the NN inverse models exhibit the best linear
fits that overlap the perfect linear fits o=t. A visual inspection of post-training analysis shown in
Figure 6 confirms the acceptable degree of approximation, generally falling in 10% bounds of the
relative error for target values. An example of the parameter identification for real experimental
measurements is presented in Section 7.2.

6.4. Parameter identification for the drained compression test

For each numerical simulation, three groups of variables were incrementally computed, i.e. axial
strain &,, deviatoric stress ¢ and volumetric strain &,. From among 32 equilibrium paths for &, €
(=0.2,0), the post-failure results were skipped, i.e. &, € (0, &) where & corresponds to gf = Gmax-
Then, 31 discrete observational points &, were randomly chosen with corresponding interpolated
variables G, &. Moreover, § was normalized into dimensionless variable gV (Equation (24)).
Moreover, in order to avoid the overfitted solutions and improve generalization, the artificial noise
was introduced into ‘smooth’ numerical results for each discrete observation of g, &,. The random
noise was introduced using the Gaussian pdf, with the coefficient of variation ¢y =0/u equal to
3% for any numerical measurement. This artificially burdens the numerical results with testing
uncertainties, i.e. device measurement errors, geometrical imperfections and natural variability of
an individual specimen.

Each training pattern consisted of 3-element target vector representing the identified parameters
M, A,k and the dimensionless input vector that comprised three normalized state variables (cf.
Equation (8)), i.e. Poisson’s ratio v, initial voids ratio ¢p and overconsolidation ratio R, and the
noisy measurements of three variables

A A A B A Al AV AV ~N ~ T
pf:[u’eo’RP’SI’""END7819""8ND’QI ""’qND] (27)

where ND =31 discrete measurements. Therefore, the extensive dimension of the 96-component
input vectors for NS=175 training patterns was reduced by invoking PCA before NN training.
The empirical correlation matrix (Equation (9)) and the transformation matrix were calculated
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(Equation (10)). The input vector was thus reduced from 96 to NR = 15 components. The calculated
variances of the corresponding 15 dominant principal components for the training set under study
were 90.510,71.287,...,4.128 for which the total variability explained by dominant principal
components was 82.76%. The reconstruction error E; [31] corresponding to the variance of 16th
principal component is thus:

E.=E[|IX—WTY|[]=3.262 (28)

where the matrix X=[X1, X2, ..., Xns] contains all data with m =96 scaled observations in each
vector, while the matrix Y=[y1,y2,...,¥ns] contains NS dimensionally reduced vectors where
each NR-component vector is the projection of the corresponding data vector from matrix X
onto the basis vectors contained in the columns of matrix W=[wj, Wz, ..., Wnr]. Thus, taking
into account only 15 principal components the extensive 96 data input is significantly reduced,
preserving a small reconstruction error.

Then, a two-hidden-layer NN with the input vectors projected on the principal axes was optimally
designed with six neurons in each hidden layer and the training set comprised 175 training sets.
The identification can thus be expressed as

pr — (PCA)p; — NN(1516—6|3) > 0, =[M, k, A]* (29)

The quality of the network performance was assessed with a set of 75 results of the random
pseudo-experiments comprising noisy measurements never presented to the network. The results
of the performed regression analysis presented in Figure 7, indicate the fair correctness of the
parameters’ prediction in terms of the correlation coefficient R and MSE. It is also indicated
that the best linear fits and the perfect models o=t exhibit conformity. A visual inspection
of M predictions shows an excellent performance of the estimator whereas the predictions of
remaining parameters reveal a slight scatter outside of 10% of relative error of target values. This
can be explained by the fact that the measurements comprised artificial noise. However, such
an accuracy is absolutely sufficient to find a neighborhood of the global solution. An example
of parameter identification for real experimental measurements is presented in the following
section.

1.6 / 0.12 , ’
. R =0.99666 o . R=0.95899 . — R=0.97248 y
5 MSE =5.01e-4 ‘ 5 MSE = 5.25e-5 / 3 9% MSE=3.06e4 ;
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(a) ttarget (accurate) (b) ttarget (accurate) (c) ttarget (accurate)

Figure 7. Drained compression BVP: post-training regression analysis for the data set never presented to
the trained network: (a) M prediction; (b) x prediction; and (c) 4 prediction.
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7. PARAMETER IDENTIFICATION FOR REAL EXPERIMENTAL DATA

The following section demonstrates an application of the identification strategy for real experi-
mental data. Model parameters are conventionally evaluated based on measurements coming from
laboratory tests carried out by the authors of this paper, using a triaxial chamber. The compressed
specimens were subject to boundary conditions as described in Section 6.1.

7.1. Material and test procedure

A series of CI and drained triaxial compression tests was performed on the Bioley clayey
silt samples (liquid limit wy, =31.8%; plastic limit wp=16.9%; unit weight of skeleton y,=
27.1kN/m?; clay fraction 27%). The remolded and homogenized specimens were initially formed
in a 80-mm-diameter tube. The 120 mm specimens were first isotropically consolidated with the
pressure of p.=100kPa and then unloaded and carefully trimmed into the standard dimensions
of 38 x 76 mm. The experiment comprised (i) one triaxial CI test with the following sequence of
isotropic loads p’ =15, 30, 60, 120,240 and 480kPa and unloading to p’=280kPa and (ii) three
triaxial drained shear tests preceded by the CI of specimens to pj =150,210 and 180kPa and
unloading with the same overconsolidation ratio p'y/ pé; =1.25. In the case of CID, the standard
shear paths dg/dp’=3 were applied (Figure 4(b)). The initial value of voids ratio for CI test was
e0=0.535, while for CID tests eg at the beginning of shearing paths was, respectively, equal to
0.478,0.488 and 0.482. Based on the measured variation of &3 against ¢j, the calculated mean
value of the Poisson ratio was equal to v=0.368.

7.2. Example of parameter identification for the CI test

An identification of the three variables x, 4 and p., was carried out by presenting to the trained
network the variations of the volumetric strain &, of the last three measurements and corresponding
mean pressures p’ normalized with respect to the maximal one. An illustrative comparison of the
test measurements and the model response using the NN-predicted parameters is shown in Figure 8.

—O— experiment

-0.01 | T~ -=0- simulation

-0.02

-0.031 NN prediction:

A =0.0452

K = 0.0060
p_=74.08 kPa

-0.04

Volumetric strain

-0.051

-]

>
-0.06

€

—007} Tl

—-0.08
10° 10' 10° 10°
p’[kPa] Mean stress

Figure 8. Comparison between experimental data and the model response using the NN-predicted
parameters A, K, pco for the isotropic consolidation test.
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Table II. Identified parameters for isotropic consolidation test.

NN prediction

Variable Analytical back-calculation value Value Error (%)
K 0.0060 0.0060 0.00
A 0.0440 0.0452 0.27
P 77.00 kPa 74.08 kPa 3.79

The specimens preconsolidated with real pressure p.=100kPa.

Values of NN-identified parameters are also compared with the values that were back-calculated
using the conventional method, i.e. the linear regression of loading curves. The results presented
in Table II show a good approximation of the identified parameters with the maximal relative error
of 3.79% corresponding to pc.. Note that the identified p¢, is smaller than the real consolidation
pressure (pco = 100kPa) due to the earlier mobilization of plastic strains and possibly the trimming
effect.

7.3. Example of parameter identification for the drained compression test

A numerical identification of three variables k, A and M was carried out separately for each
test by presenting to the trained network variations of three measured variables, i.e. axial strain
ea=¢1 and corresponding volumetric strain &, and normalized deviatoric stress ¢ taken within
&, € (—0.12,0). Thirty-one measurements of each variable completed with the values of the Poisson
ratio, voids ratio and preconsolidation ratio were collected in the input vector p. Then, using the
transformation matrix WlT the normalized input f)tT (Equation (27)) was projected onto the subspace
spanned by the eigenvectors and presented to the network. The NN-determined parameters, their
mean values and relative errors with reference to optimal values are presented in Table IV. The
identified parameters of the second test were taken to illustrate the quality of the prediction in
comparison with the values obtained through the optimization. This analysis shows the effect of
the measured data discretization on the evaluated parameters. Two optimization runs were invoked,
i.e. (i) for all 31 discrete points along the whole interval of ¢; and (ii) for the chosen points within
the elastic and failure domains (the points in between were skipped). Equal importance of ¢ and
&y measurements was assumed by introducing weights as the inverse of error variance where the
errors were adopted as equal to e; =0.5kPa and e,=0.0001 (cf. [44]). During iterations, only
identified parameters were updated. The results presented in Figure 9 show that the fitting of all
discrete points leads to the underestimating of M with reference to the maximal value of ¢/p’. The
relative error that appeared reaches 4.5%, see Table III. On the other hand, the fitting of arbitrarily
chosen fitting zones leads to the value of M for the maximal g/p’ with a loss of the degree of the
fitting in the middle of ¢;—¢ curve. Clearly, the choice of the discretization approach will depend
on the assumed criterion imposed by a further geotechnical problem. It is worth noting that the
model response with NN gives a very close prediction especially for ¢;—g variation (the error of
the identified parameter M is equal to 0.16%). This demonstrates that NN additionally preceded
by PCA is able to extract by itself the most important information from the whole family of
measurements. It also means that the network weights provide the sensitivity of model parameters.
Moreover, NN considers the overall material behavior, and not only its specific state, which can
be illustrated by the sensitivity of NN to the dilatant behavior of the soil at the final part of the
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Figure 9. Optimization with the NN-predicted initial vector of parameters for the drained compression
test (p(=120kPa). A comparison of fitting for the discrete points of the arbitrarily significant importance
and for all the discrete measurements.

Table III. Comparison of the identified parameter M by means of the analytical back-calculation, NN
prediction and optimization with important discrete points and an entire vector of measurements.

Optimal: chosen Optimal: all
, NN prediction discrete measurements discrete measurements
max(q/p’)
Variable value Value Error (%) Value Error (%) Value Error (%)
M 1.223 1.221 0.16 1.218 0.41 1.168 4.50

&1—¢y curve. NN considers the overall variation of ¢y, providing an averaged value of A, which is
smaller than the value identified for the maximal volume change (cf. Table IV).

Hereafter, the fitting procedures are carried out merely for chosen discrete points in the elastic
and failure regions. The results of the three separate parameter identification runs and one mutual
optimization containing data of three tests are presented in Table IV. In the table, the relative errors
of the identified parameters for the NN predictions and analytical calculations are calculated with
respect to the values obtained through the subsequent GBO runs. A surprisingly large error of the
evaluated value of k can be explained by the high order of the identified parameter and this is not
significantly reflected in the model response presented in Figure 10. The NN-recognized parameters
are quickly updated with the minimum computational cost within two iterations. Figure 10 reveals
the limitations of the MCC model, which makes it impossible to obtain a perfect agreement between
experimental and numerical data.

It can be noted that the optimal values of x and A obtained from consolidation and compression
tests are inconsistent. This is due to prescribing the value of R, =1.25 with the measured confining
pressures pp and p.. This state parameter could be incorporated into the optimized vector under
the condition that additional results of CI are included.

7.4. Efficiency test

The quantitative test of effectiveness of the proposed two-level scheme was performed on one of
the compression tests starting from different remote points chosen arbitrarily. As a large change of
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Table I'V. Comparison of variables evaluated by means of analytical back-calculation,
NN prediction and optimization for three drained compression tests: 1, p;=120kPa;

2, py,=168KkPa; 3, p(=144kPa, respectively.

Analytical back-calculation NN prediction Optimization
Variable Value  Mean Errors (%) Value  Mean Errors (%) Single run  Three curves
0.0013 85.7 0.0019 171.4 0.0007
K 0.0013 0.0012 67.5 333 0.0030 0.0028 250 574 0.0040 0.0018
0.0019 18.8 0.0036 125.0 0.0016
0.0010 92.8 0.0137 4.9 0.0144
A 0.0011 0.0104 93.5 30.7 0.0156 0.0147 6.6 2.0 0.0167 0.0150
0.0112 22.2 0.0148 2.8 0.0144
1.223 0.4 1.221 0.2 1.218
M 1.240 1.227 0.1 0.4 1.209 1.203 2.4 1.5 1.239 1.222
1.217 0.5 1.180 2.6 1.211
400 0
e exp.(p '0:120kPa)
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Figure 10. Optimization with the NN-predicted initial vector of parameters: (a), (b) model calibration with
experimental data for three drained compression tests; (c) convergence rate of GBO; and (d) convergence
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Figure 11. Efficiency test of the optimization preceded by the NN prediction in
comparison with three optimization runs with the user-specified initial vector: (a) rate
of convergence and (b) computational effort.

parameters may lead to an instability of optimization, convergence was controlled by the scaling
parameter prescribed in each run equal to p,=0.5. The rate of the convergence was measured
for the optimization with the NN-assigned and three testing the user-specified initial vectors.
Testing patterns comprised the values of M, A, x given, respectively, as b; =[0.8,0.1,0.01], b, =
[1.6,0.1,0.01] and b3 =[0.8, 1.0, 0.1]. Each minimization converged to the same optimal solution.
Note that starting from remote initial points, instabilities of the solution may often occur, for
instance, in the case of calibration of hydro-mechanical problems (cf. Figure 2).

Figure 11(a) clearly shows the fast convergence of the optimization with the NN-assigned
parameters. Automated minimization is accomplished within two iterations whereas optimizations
regarded as trial-and-error examples with user-assigned parameters require at least four iterations.
Note that in each iteration, besides the error function computation, the number of FE runs is
expanded by the number of optimized parameters if the forward finite difference method is used to
evaluate the sensitivity matrix. This number can be multiplied if the model calibration is carried out
for several experimental tests simultaneously.! Consequently, the increasing number of iterations
results in the increase of computational cost that was augmented for the considered testing sets
between 2 and 4 times (Figure 11(b) presents the CPU time that is normalized with respect to the
convergence time of the NN-enhanced optimization).

Clearly, the number of iterations may also increase with the enhancement of the constitutive
model, resulting in an increase in the number of parameters and experimental curves.

8. CONCLUSIONS
This paper presents the efficient generic scheme of the automated calibration procedure of constitu-
tive models. The potential of the two-level parameter identification method combining the standard

gradient-based optimization (GBO) technique supported by the FFNN algorithm is presented in
detail. The efficiency of the presented method has been proved on the elasto-plastic model where

tEach test requires running an individual model due to different initial stress conditions.
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soil specimen is subject to the triaxial boundary conditions. Some general conclusions can thus be
drawn

e The application of the neural network (NN) technique to solve an inverse problem provides
an efficient and accurate search of the vicinity of a global solution avoiding local minima. The
close approximation of parameters preserves the minimal computational expense during the
preceding optimization and helps the user to avoid performing time-consuming trial-and-error
runs. This is a crucial feature, if the large-scale FE analyses, required in the case of modeling
of non-homogeneous stress state BVPs, e.g. field tests are considered during the subsequent
direct searching with GBO.

e The choice of an admissible space of parameters plays an important role in NN training leading
to the reduction of the multi-dimensional space of parameters and a significant decrease in
the number of generated patterns with a simultaneous improvement in the accuracy.

e Incorporating PCA into NN training results in the significant reduction of large-dimensional
data with no significant loss of accuracy of evaluated parameters.

e The choice of discrete points during curve fitting has a significant importance. The exam-
ples presented in this paper demonstrate that NNs possess the ability to extract meaningful
information about the parameters’ sensitivity from the training data set.

e A potential application of the NN-based technique for the parameter identification of enhanced
constitutive models basically involves delivering relevant data that illustrates the physical
phenomena that are considered in the model. Obviously, in the case of a calibration of more
complex soil models, the parameters that can be directly estimated with the high degree of
confidence can constitute a part of the NN input vector (e.g. the Poisson coefficient or the
overconsolidation ratio in the presented example), whereas the characteristics of no physical
meaning for a given BVP become the objects of optimization.

Using a well-designed interface, the proposed parameter identification can be adapted to any
constitutive model or BVP with only few modifications. Different models or structural tests can
be attached as modules to the fully automated pattern generator. The numerical results are used
once to properly adjust network weights that are stored with negligible storage cost. As NNs
are trained with broad intervals of parameters, they are able to correctly map any experimental
set of measurements. Thus, the trained NNs can be part of the automated optimization module
incorporated into numerical solution applications such as FE packages. This can be of particular
value for multi-parameter models characterized by the complexity of parameter assessment.

Further research is directed at adopting the method for complex BVPs where the efficiency of
the existing closed-form solution is restricted due to imposed assumptions. Assembled results of
the study of the NN-enhanced parameter optimization for the coupled hydro-mechanical BVP of
self-boring pressuremeter tests will be subsequently reported.
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